SIHIPrime - Side Channel Pumps

Self-priming, segmental type with very low NPSH

CEH-X 1201 ... 3608

TECHICAL DATA

Capacity: from 0.4 up to 7.5 m³/h

Delivery head: from 10 up to 322 m

Speed: 1450 rpm (max. 1800 rpm)

Temperature:

max. 180 °C for high temperature design

(higher temperatures on request)

Casing pressure: PN 40

Shaft sealing: mechanical seal DIN 2501 / PN 40 Flange connections:

Direction of rotation: anti-clockwise

(when seen from the drive end)

Protection classification: Ex II2 Gc T1-T5

APPLICATION

The Sterling SIHI CEH-X pump is a self-priming side channel pump capable of handling gas along with the medium and operates at a

The CEH-X pumps are used for problem-free pumping of clean liquids at unfavourable suction side conditions. They are also very suitable for positive suction heads below 0.5 m.

Different material possibilities with uniform dimensions and performance characteristics as well as the standard exchangeable components are used for the construction.

The CEH-X pumps are particularly recommendable for applications in the pharmaceutical, chemical or petrochemical market as well as in the plastic or oil industry. Because of its low NPSH and positive suction head the CEH-X is very suitable for the pumping of liquefied gases and liquids under vapour pressure like condensate, refrigerant, boiler feed or LPG.

The CEH-X pumps have a retaining stage, combined with the low NPSH stage, to avoid the dry running by controlling the liquid level in the pump. This design is especially developed for the handling of liquids under vapour pressure or when pumping from underground tanks. The CEH-X pumps are used for bottom off-loading of liquids under vapour pressure.

DESIGN

The pumps of the SIHI^{prime} range are side channel pumps having segmental type construction. The construction of the CEH-X pump is a centrifugal combined system. This combination pump is suited with a centrifugal stage in serial connection before the side channel stages to obtain a more favourable NPSH.

The program comprises, currently, 3 sizes (1200, 3100 and 3600) each with 1-8 stages. The existing material design allows an optimum rating for the respectively desired performance range and the pumping medium.

The applied hydraulic components are from our modular side channel system (interchangeability of parts).

CONSTRUCTION

Casing pressure

Maximum 40 bar from -40 °C up to +120 °C. Maximum 32 bar from +120 °C up to +180 °C.

Pressure stages for temperature as per DIN EN 1333.

Please observe

Technical rules and safety regulations:

Casing pressure = inlet pressure + delivery head at minimum pump capacity.

Position of branches

Axial suction branch, discharge branch points radially upwards.

Flanges

Flanges in accordance with DIN EN 1092-2 / PN 40. Flange design as per DIN 2512 with groove or drilled according to ANSI 150 or 300 lbs is basically possible.

Bearing

One grease lubricated, greased for life, ball bearing according to DIN 625 and one liquid surrounded sleeve bearing.

Rotation direction

Anti-clockwise, when looking from the drive end.

Shaft sealing

The shaft is sealed by a mechanical seal according to DIN EN 12756, with quench connection.

The shaft sealing is also available in a design suitable for heating or cooling of the mechanical seal and a double mechanical seal (back-to-back as well as tandem) design is possible on request.

133.51302.52.01 E

Material design

		Material design										
		GS Cast Iron/ GL	GS Cast Iron/ GL Cast Iron									
Pos.	Components	TM	4B									
2350	Vane wheel impeller	G-X 3 CrNiMoCuN 26 6 3 3	CuZn40Al2	G-X 3 CrNiMoCuN 26 6 3 3								
1060	Suction casing											
1070	Discharge casing	5N 0 10 400 4										
1080	Low NPSH stage	EN-GJS-400-1										
1510	Shell casing		G-X5 CrNiMoNb 18 10									
1090	First suction intermediate			1								
1140	Side channel intermediate											
1141	Last discharge intermediate	EN-GJL-25										
2310	Centrifugal impeller	7										
2100	Shaft											
4410	Mechanical seal casing	X 20 Cr 13	3	X 5 CrNiMo 17 12 2								
4420	Cooling insert											
3600	Bearing cover		EN-GJS-400-18-L	T								
0241	Bearing bush	CY 10 C / Antimony Carbon*										

^{*} Bearing bush in Antimony Carbon is only used in high temperature design

Casing seal

The casing sealing is done by o-ring gaskets compatible with the handled medium.

Drive

By electric motor, type of construction IM B3. According to the area of usage, we can supply motors of any kind of protection (EExe, EExd).

General comments

Side Channel pumps with the same hydraulic construction are manufactured in series as:

AOHA Low duty pump with oval flanges, PN 10

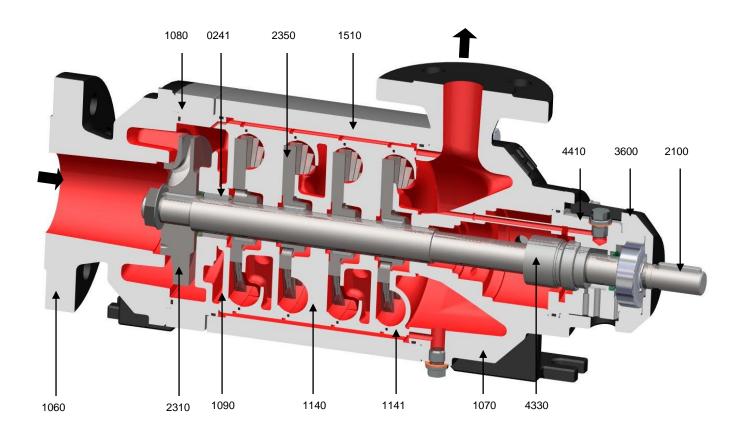
AKH-X Medium duty pump, PN 25

CEBA Vertical pump, PN 25 with magnetic coupling

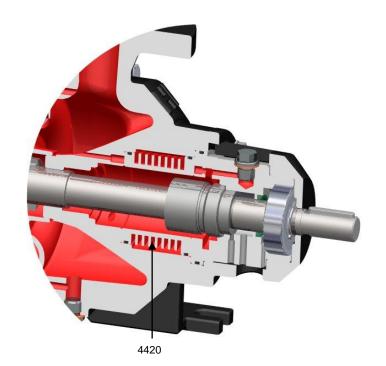
AEH-X High duty pump, PN 40

CEH pumps are available in magnetic coupling design.

Note: For hydraulic sizes from 4101 to 6108 please see catalogue CEH PIII/11 (133.51301.58.01 E).


Technical documents about these pumps will be readily supplied on request

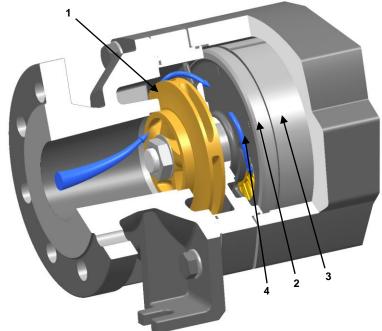
Sensor for Condition Monitoring

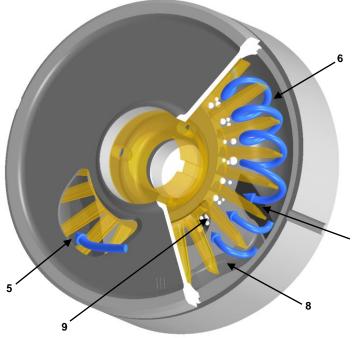

The **SIHI**^{detect} sensor is the ideal solution for **vibration velocity** measuring and for pump **condition monitoring** for example to detect bearing wear, unbalance, misalignment, unacceptable pipeline forces, cavitation, etc. This sensor is suitable for all liquid and vacuum pumps and the main features are:

- Simple to connect
- Universal use
- Visual check via LED display
- Easy Installation
- Also available as non Ex version

Sectional drawing and parts list

Pos.	Components
0241	Bearing bush
1060	Suction casing
1070	Discharge casing
1080	Low NPSH stage
1090	First suction intermediate
1140	Side channel intermediate
1141	Last discharge intermediate
1510	Shell casing
2100	Shaft
2310	Centrifugal impeller
2350	Vane wheel impeller
3600	Bearing cover
4330	Mechanical seal
4410	Mechanical seal casing
4420	Cooling insert




Operating principle

The CEH-X pump is a combined system side channel pump. It is suited with a low NPSH centrifugal impeller (1) placed before the side channel stages. This NPSH inducer stage delivers enough pressure to overcome the entrance pressure loss of the first side channel stage or the required NPSH.

A side channel stage consists of:

- A suction intermediate (2),
- A discharge intermediate including the side channel (3),
- A vane wheel impeller located between the 2 intermediates (4).

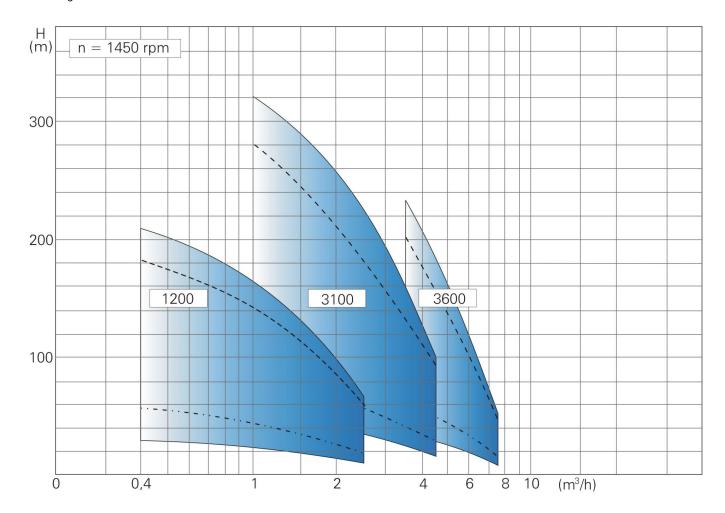
The fluid entrance goes through the suction hole (5). The turning of the vane wheel impeller creates an under pressure at the beginning of the side channel and the liquid (with or without gas) is drawn in. The pressure generating is obtained by the repetitive re-entering of the liquid in the side channel (6). The liquid goes then to the next stage through the discharge hole (7). The air displacement channel (8) provokes a positive displacement effect so the gas remaining at the root of the vane wheel impeller is forced out through the gas slot (9).

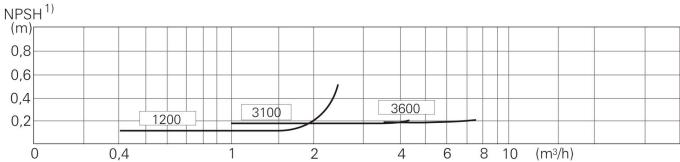
A side channel pump can de-aerate and degas the suction line by itself and is thus very suitable for suction lift operation. A side channel pump can handle large quantities of (entrained) gas. Mixtures up to a gas share of 50% are possible. The ability for self-priming and the handling of large amounts of (entrained) gas will guarantee continuous operation even in case of evaporation and therefore contribute to a higher level of safety in industrial processes.

To avoid cavitation the distance between the liquid level and the entrance at the suction side of the pump is restricted. This distance is related to the NPSH or Net Positive Suction Head. The NPSH for CEH-X pumps is very low due to its special construction. The axial and large diameter entrance leads to less flow disturbance and lower friction losses. Together with the low NPSH of the centrifugal impeller the CEH-X can handle a positive suction head of less than 0.5 m.

This makes the CEH-X very suitable for pumping liquids near their boiling point at reasonable economic expenses and the low NPSH guarantees also full output capacity because of operation without cavitation

Performance range

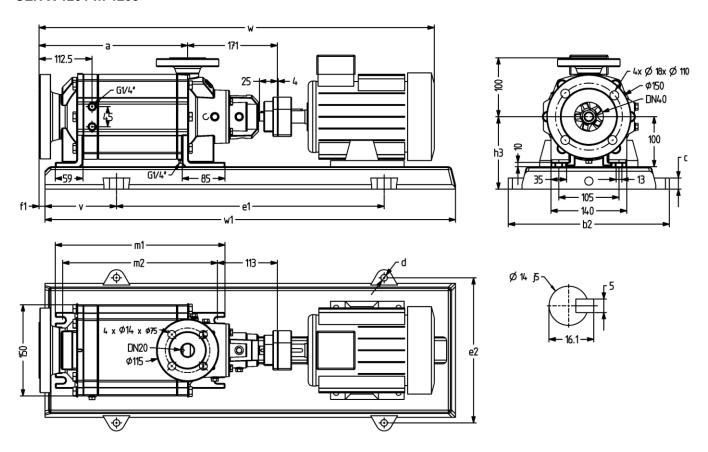

General conditions


Liquid: Water $1 \; kg/dm^{\textstyle 3}$ Density: Viscosity: 1 cSt 20 °C Temperature: 1013 mbar Atmospheric pressure:

Characteristic tolerances

The Side Channel pumps are not submitted to any normalized test tolerances. Here under are our acceptance values: Capacity \pm 9% - Delivery head \pm 7% - Power + 10%.

Measuring standard According to ISO 5198.



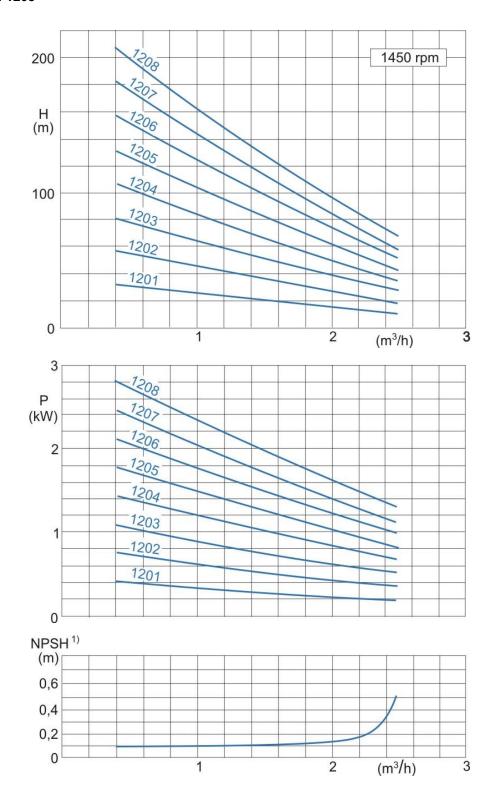
Note: 1) When using a liquid containing gas, a safety margin has to be added.

Dimension chart and pump set drawing

CEH-X 1201 ... 1208

Pump		Motor		Base	Cou	upling	Wei	ight														
size	kW	kW ¹⁾	size	plate	В	BDS ²⁾	Pump	set	а	b2	С	d	e1	e2	٧	f1	h3	m1	m2	w ³⁾	w1	
1201	0,37	0,37	71 80	P007 P008	68	76	18	39 45	195	317 297	20	15	350	285	110	-9	135 140	238	204	609	570	
	0,55	0,55		P008				45 47		297			400	265	120		140			643	640	
1202	0,55	0,55 0,75	80 80	P008	68	76	20	48	229	297	20	15	400	265	120	-9	140	272	238	677	640	
	1,1	1	90S	P241			-	56		330	25	19	480	290	125		165			735	730	
	0,75	0,75	80	P210				52		300			420	260	115					711	650	
1203	1,1	1	90S	P241	68	76	22	58	263	330	25	19	480	290	125	-9	165	306	272	769	730	
	1,5	1,35	90L	F 24 I				62		330			400	290	123					109	730	
	1,1	1	90S	P241	P241	68	76		60		330			480	290	125					803	730
1204	1,5	1,35	90L				24	64	297		25	19			_	-9	165	340	306			
	2,2	2	100L	P272	80	88		75		360			540	320	140					844	820	
1205	1,1 1,5	1,35	90S 90L	D272	P272	68	76	26	66 70	331	360	25	19	540	320	140	-9	165	374	340	837	820
1203	2,2	2	100L	1 212	80	88	20	77	331	300	23	13	340	320	140	-3	100	314	340	878	020	
	1,5	1,35	90L	P272	68	76		72		360		19	540	320	140		165			871	820	
1206	2,2	2	100L	D045	00	88	28	84	365	204	25	45	000	205		-9	450	408	374	912		
	3	2,5	100L	P015	15 80	88		85	1	361		15	600	325	160		150			912	920	
	1,5	1,35	90L		68	76		74				15								905		
1207	2,2	2	100L	P015	80	88	30	86	399	361	25		600	325	160	-9	150	442	408	946	920	
	3	2,5	100L					87												0.0		
1208	2,2	2,5	100L 100L	P015	80	88	32	88 89	433	361	25	15	600	325	160	-9	150	476	442	980	920	

The weight of the pump will be approximately 6% higher when using stainless steel.


General: Values are valid for water $\rho = 1 \text{ kg/dm}^3$ and $\upsilon = 1 \text{ cSt}$. **Design tolerances:** Capacity± 9% - Delivery head ± 7% - Power + 10%. **Notes:**1) For EExe II T3 motors.

²⁾ For every pump set in ATEX area.

3) Dimensions are depending on the used motor trade mark.

Performance curves


CEH-X 1201 ... 1208

Note: 1) An additional safety head must be added when handling a liquid containing gas.

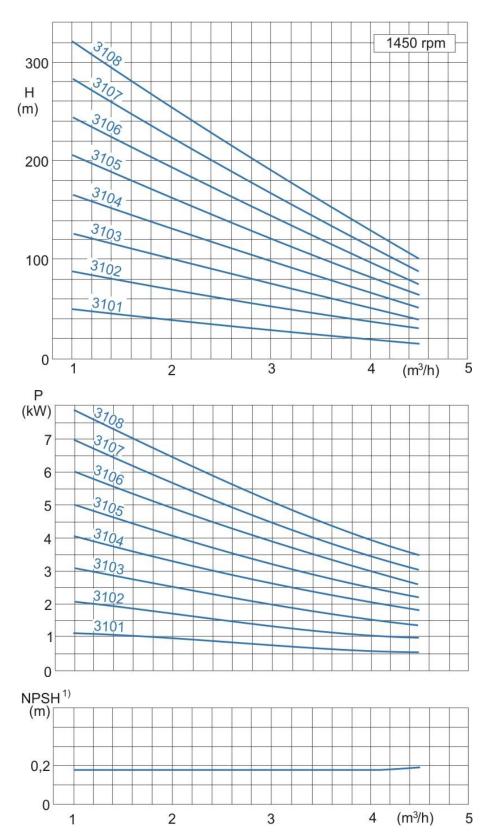
Dimension chart and pump set drawing

CEH-X 3101 ... 3108

Pump	p Motor			Base	Co	upling	Weight																
size	kW	kW¹)	size	plate	В	BDS ²⁾	Pump	set	а	b2	С	d	e1	e2	٧	f1	h3	m1	m2	w ³⁾	w1		
3101	0,75	0,75	80	P008	68	76	31	60	213	297	20	15	400	265	120	-13	152	261	227	691	640		
3101	1,1	1,1	90S	P241	00	70	31	67	213	330	25	19	480	290	125	-13	177	201		749	730		
	1,1	1	90S	P241	68	76		72		330			480	290	125					789	730		
3102	1,5	1,35	90L		00		34	74	253		25	19				-13	177	301	267				
	2,2	2	100L	P272	80	88		81		360			540	320	140					830	820		
3103	2,2	2	100L	P272	80	88	38	89	293	360	25	19	540	320	140	-13	177	341	307	870	820		
0100	3	2,5	100L	1 212	00	00	30	90	200	000	20	10	0-10	020	140	10	177	5-1	007	070	020		
	2,2	2	100L	P272	P272	P272				93		360		19	540	320	140	140	177	77		910	820
3104	3	2,5	100L		80	88	42	94	333		25					-13		381	347				
	4	3,6	112M	P015	015			117	ļ	361		15	600	325	160		162			931	920		
	3	2,5	100L	P015	80	88	45	102	373				600		160		162		387	950	920		
3105	4	3,6	112M					120		361	25	15		325		-13		421		971			
	5,5	5	132S	P017	95	103		158					700		200		192	<u> </u>		1047	1100		
	4	3,6	112M	P015	80	88		123	413				600		160		162	161	427	1011	920		
3106	5,5	5	132S	P017	95	103	48	161		361	25	15	700	325	200	-13	192			1087	1100		
	7,5	6,8	132M	_				171										ļ		1113			
	4	3,6	112M		80	88		143									172	501	467	1051			
3107	5,5	5	132S	P017	95	103	52	165	453	361	25	15	700	325	200 -13	-13	192			1127	1100		
	7,5	6,8	132M					205												1153			
0400	5,5	5	132S	P017	95	103	55	198	400	361	25	15	700	325	200	-13	192	- 44	507	1167	1100		
3108	7,5	6,8	132M	D.400				208	493		00	0.4	0.40	400	045		0.40	541	507	1193	4070		
	11	10	160M	P436				253		540	30	24	840	490	215		240			1285	1270		

The weight of the pump will be approximately 6% higher when using stainless steel.

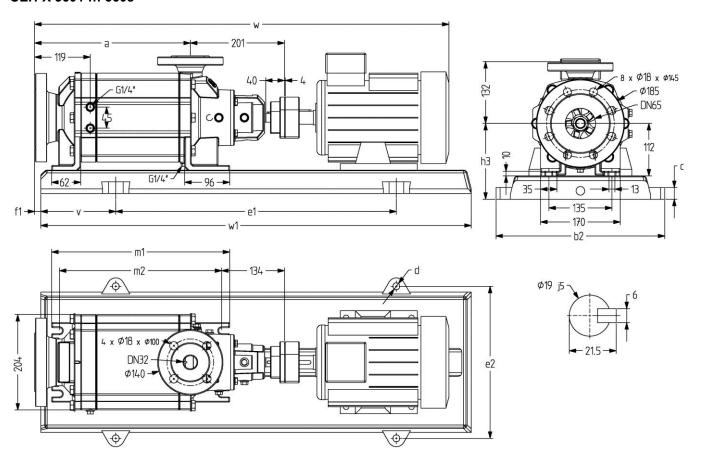
General: Values are valid for water $\rho = 1 \text{ kg/dm}^3$ and $\upsilon = 1 \text{ cSt}$.


Design tolerances: Capacity± 9% - Delivery head ± 7% - Power + 10%.

Notes: 1) For EExe II T3 motors.

 ²⁾ For every pump set in ATEX area.
 3) Dimensions are depending on the used motor trade mark.

Performance curves


CEH-X 3101 ... 3108

Note: 1) A safety margin has to be added when using a liquid containing gas.

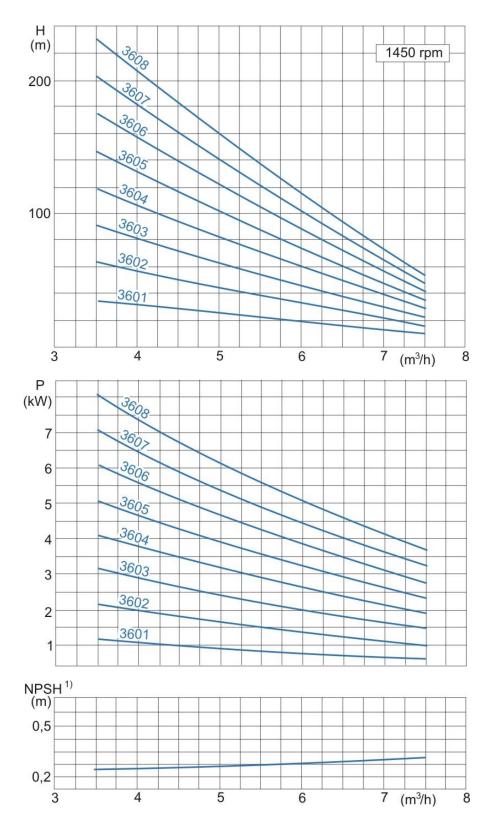
Dimension chart and pump set drawing

CEH-X 3601 ... 3608

Pump		Motor		Base	Co	upling	Weig	jht													
size	kW	kW ¹⁾	size	plate	В	BDS ²⁾	Pump	set	а	b2	С	d	e1	e2	v	f1	h3	m1	m2	w ³⁾	w1
	0,75	0,75	80	P008				55		297	20	15	400	265	120		152			691	640
3601	1,1	1,1	90S	P241	68	76	31	67	213	330	25	19	480	290	125	-13	177	261	227	749	730
	1,5	1,5	90L	F 241				74		330	25 1	19	400	290	125		177			749	730
3602	1,5	1,35	90L	P241	68	76	34	74	253	330	25	19	480	290	125	-13	177	301	267	789	730
3002	2,2	2	100L	P272	80	88	34	89	233	360	25	19	540	320	140	-13	177	301	201	830	820
	2,2	2	100L					89												870	
3603	3	2,5		P272	80	88	38	101	293 360	25	19	540	320	140	-13	177	341	307		820	
	4	3,6	112M					119											<u> </u>	891	
	3	2,5	100L	P272	80	88	42	105	333	360		19	540	320	140		177	381	347	910	820
3604	4	3,6	112M	P015				117		361	25	15	600	325	160	-13	162			931	920
	5,5	5	132S	. 0.0	95	103		152		00.			000	020	.00		182			1007	020
	3	2,5	100L	P015		88	45	102	373	361	25	15	600		160	-13	162	421		950	920
3605	4	3,6	112M					120						325					387	971	
	5,5	5	132S	P017	95	103		171					700		200		192		┞——	1047	1100
	4	3,6	112M	P015	80	88		123					600		160		162		427	1011	920
3606	5,5	5	132S	P017	95	103	48	161	413	361	25	15	700	325	200	-13	192	461		1087	1100
	7,5	6,8	132M					171												1113	
3607	5,5	5	132S	P017	95	103	52	165	453	361	25	15	700	325	200	-13	192	501	467	1127	1100
	7,5	6,8	132M				32	168		001										1153	
	5,5	5	132S	P017	17		55	161		361	25	15	700	325	200	-13	192		507	1167	1100
3608	7,5	6,8	132M		95	103		171	493									541		1193	
	11	10	160M	P436				254		540	30	24	840	490	215		240			1285	1270

The weight of the pump will be approximately 6% higher when using stainless steel.

General: Values are valid for water $\rho=1$ kg/dm³ and $\upsilon=1$ cSt. Design tolerances: Capacity± 9% - Delivery head ± 7% - Power + 10%.


Notes:

1) For EExe II T3 motors.
2) For every pump set in ATEX area.

³⁾ Dimensions are depending on the used motor trade mark.

Performance curves

CEH-X 3601 ... 3608

Note: 1) A safety margin has to be added when using a liquid containing gas.